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Abstract-A set of series consisting of a combination of free vibrating beam functions and poly­
nomials is used as the admissible functions in the Rayleigh-Ritz method to study the problem of
the flexural vibration of thin, uniform thickness, orthotropic rectangular plates which may be
continuous over several supports in one or two directions, In practice, which kind of free vibrating
beam functions are used is determined by the boundary conditions of the plate. The starting order
of the beam eigenfunctions and the number of terms in the polynomials in each direction depend
on the number of intermediate line supports in that direction. The coefficients of the polynomials
are decided by the boundary conditions of the plate and the locations of the line supports, Some
numerical results are given for the simply-supported and/or clamped rectangular plates with two­
and three-spans in one and two directions. It is demonstrated that the method may be used to tackle
such plate problems and has considerable accuracy and fast convergence compared with the available
results, the difficulty of application not being greater than any other methods,

I. INTRODUCTION

In aeronautical, civil and naval engineering and the like, many structures may be simplified
to rectangular plates with intermediate supports in one or two directions. It is of great
importance to study the dynamic characteristics of such plates. In mechanical analysis, the
intermediate supports ofcontinuous plates may be treated as rigid line supports with respect
to lateral translation, offering no rotational restraint and/or stringers including the effect
of translational and rotational rigidity and inertia of the supports. In the present paper,
attention will be confined to the study of plates continuous over line supports in one and
two directions.

Much of the work reported in the literature has been concerned with plates continuous
only in one direction. Early research mainly focused on the rectangular plates simply
supported at two opposite edges and continuous over rigid supports perpendicular to those
edges. Ungar (1961) treated a two-span, simply-supported plate and presented a semi­
graphical approach. Veletsos and Newmark (1956) used the Holzer method for torsional
vibration of shafts to determine the eigenfrequencies of plates simply supported along the
continuous edges. The transfer matrix method was developed by Mercer and Seavey (1967)
for analysis of such plates. Moskalenko (1969) proposed an orthogonalization method of
finite-difference equations in vibration analysis of the periodically-supported plates with a
two-span period. The effect of the boundary conditions along the edges perpendicular to
the periodic supports was analysed by Bolotin (196Ia) and by Moskalenko and Chien De­
lin (1965) under Bolotin's edge effect method (196Ib), two- and three-span plates were
considered respectively. Dickinson and Warburton (1967) also used Bolotin's method for
the study of two-span plates involving clamped, simply-supported and free edges. The
modified Bolotin method, developed by Vijayakumar (1971) and Elishakoff (1974) was
used by Elishakoff and Sternberg (1979) for the determination of the eigenfrequencies of
rectangular plates continuous over line supports with an arbitrary number of equal spans
in one direction. More recently, the receptance method was used by Azimi et al. (1984) for
three- and four-span plates in one direction. Cheung and Cheung (1971) studied the effect
of the boundary conditions at the edges perpendicular to the periodic supports through the
finite-strip method.

The problem of the vibration of line-supported plates which are continuous in two
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directions has received rather less attention. However, Dill and Pister (1958) presented a
series solution to analyse plates continuous in one and two directions. The series solution
was extended by Dickinson (1969, 1971) and found an application in orthotropic plates
and plate systems. Wu and Cheung (1974) used a method of finite elements in conjunction
with Bolotin's approach to plates continuous in two directions. Lindberg and Olson (1967)
applied the finite element method for all-round clamped multispan plates. Tokahashi and
Chishaki (1979) presented a sine series solution for the simply-supported plates continuous
over a number of line supports in two directions. In a recent paper by Kim and Dickinson
(1987), a set of orthogonal polynomials which is developed from Bhat's functions (1985)
generated by a recurrence formula, was proposed as the admissible functions for use in the
Rayleigh-Ritz method to study the flexural vibration of line-supported rectangular plates
and plate systems. A combination of free vibrating beam functions and polynomials was
used to study buckling and vibration of continuous folded plates by Cheung and Delcourt
(1977), Delcourt and Cheung (1978) and Cheung and Swaddiwudhipong (1982).

Although there are several approaches to calculating the vibration characteristics of
plates with line supports in one and two directions, it is of great significance to provide
what are often simpler, more efficient and/or more accurate solutions to those problems
for which such exist. In this paper, a set of series consisting of a combination of beam
eigenfunctions and polynomials is selected as the admissible functions of line-supported
plates. The formulation of the Rayleigh-Ritz method when using the admissible functions
suggested by this paper is straightforward for continuous plate problems and yields results
of comparable accuracy with no computational difficulty. The analytical procedure is
outlined in this paper and some numerical results are given for two- and three-span
rectangular plates with the edges simply supported and/or clamped in one and two direc­
tions. In several instances, comparisons are made with values available in the literature and
in all cases, close agreement may be seen to be achieved. As seen from the results, the
convergence is very fast and the accuracy is generally better than Kim and Dickinson's
(1987).

2. MATHEMATICAL MODEL

It is assumed that the plate under consideration lies in the x-y plane, is bound by edges
x = 0, x = a and y = 0, y = b and is of uniform thickness, rectangularly orthotropic
material with principal axes orthogonal to the edges. The intermediate line supports are
also assumed to lie orthogonal to the plate edges and to the present motion in the z-direction
but to offer no resistance to normal rotation. A constant in-plane force can be included in
the analysis without any difficulty but, for the sake of brevity, is omitted here.

From the vibrational theory of thin plates, the strain and kinetic energies of the elastic
plate in Cartesian co-ordinates are as follows:

fa fb (OW)2
T = 1ph Jo Jo at dy dx,

(1 a)

(1 b)

where w is the deflection of the plate in the z-direction and p is the material density. The
quantities Dx = Exh3/12(1-vxyvyx), Dy = DxE,/Ex, Dxy = G''Yh3/12 and H = vxyDy+2Dxy
are flexural rigidities, in which Ex and Ey are Young's moduli in the x- and y- directions,
respectively, Gxy is the shear modulus, vxy and vyx are Poisson's ratios and h is the plate
thickness. This equation also applies to the isotropic case, for which vxy = vyx = v,
Dx = D, = H = Eh 3/12(1-v 2

) = D and D<y = (1-v)D/2.
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From the Hamiltonian principle, the stationary value exists for the true solution, i.e.
there is the following variation

c5(U-T) = o.

For free vibration of the plate, the deflection w may be expressed as

W(x, y, t) = W(x, y) eiw1
,

(2)

(3)

where w is the radian natural frequency of vibration and t is time, i = J=l. Assuming the
variables in W(x, y) are separable, mode shape function W(x, y) may be expressed in terms
of series as

(4)
m n

where qJm(x) and t/Jn(y) are appropriate admissible functions which satisfy at least the
geometrical boundary conditions and, if possible, all the boundary conditions. A mn are
unknown coefficients. Substituting eqns (3) and (4) into eqn (1) and making use of eqn (2)
to minimize with respect to the coefficients Amn leads to the eigenvalue equation

" " [C - 'E(O,O)F(O,O)]A - 0
~ ~ mnij A mi nj mn - ,
m n

where

D b 2 D a 2
C = ~ E(2.2) F(O,O) _ + .-L E(o.O) F(2,2) _ +E(0,2)F(2.0) +E(2,0) F(0,2)

mnij H ml nJ a2 H m, nJ b2 ml nJ m, nJ

(5)

+ 2 Dxy {2E(I.I)F(I,I) _E(O,2)F(2.0) _E(2.0)F(0.2)}H m, nJ ml nJ ml nJ ' m, n, i, j = 1,2, 3, ... ,

A = phw2a2b2/H, E~;s) = d r+s- I)f (drqJm/dxr)(dsqJ;/dr)dx,

F~/) = b(r+s-I) f: (drt/Jn/dyr)(dst/J)dy)dy, r,s = 0, 1,2.

The solution of eqn (5) yields the natural frequencies of vibration of the plate together with
the coefficients for the mode shapes (4). From the above analysis the validity and accuracy
of this solution completely depend on the choice of the admissible functions qJm(x) and
t/Jn(Y). There have been several approaches to selecting qJm(x) and t/Jn(Y). However, the
simplicity, convergence and accuracy are not always satisfying. Taking account of the
structural characteristics of the rectangular plates with intermediate line supports, here the
admissible functions are taken as follows:

lx+ 3

qJm(X) = Xm+1Ax) + L Cmk;« = Xm+1Ax)+Xm(X), m = 1,2,3, ... , (6a)
k~ 0

ly+ 3

t/Jn(y) = Yn+1y(y)+ I Dnk~ = Yn+/y(y) + Yn(y), n = 1,2,3, ... , (6b)
k~O

where Ix and Iy are the numbers of the intermediate line supports running perpendicular
to the x- and y-axes, respectively. Cmk and Dnk are unknown coefficients of the polynomials
which may be decided by the boundary conditions and the zero deflection conditions at the
intermediate line supports. Xm+1Ax) and Yn+1y(y) are the free vibrating beam eigenfunctions
satisfying the corresponding boundary conditions of the plate in the x- and y-directions,
respectively. It is of great importance to notice that the starting orders of the beam
eigenfunctions in eqns (6a) and (6b) ar~ not from the first but depend on the number of
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the intermediate line supports in that direction and the numbers of the terms of polynomials
are also decided by the number of the line supports in that direction.

From the vibrational theory of beams, the vibrating beam eigenfunctions may be easily
given for arbitrary boundary conditions. For example, for a free vibrating clamped-elamped
beam, the eigenfunctions are

X,(x) = cosh (kix/a) -cos (kix/a) - c<;(sinh (kix/a) - sin (kix/a)) ,

Yi(y) = cosh (kiy/b) -cos (k,y/b) -ai(sinh (kiy/b) -sin (kiy/b), i = 1,2,3, ... ,

where k i is the zero of the expression

cos k, cosh ki = 1,

and where a, is

'Xi = (cos ki-cosh ki)/(sin ki-sinh k i )·

For a clamped-free beam, the expressions of the eigenfunctions are the same as those of
clamped-elamped beams, but k i and 'X, satisfy, respectively,

cos k i cosh ki = -1, 'Xi = (cosh ki+cos k;)/(sinh k,-sin k;).

For a clamped-simply-supported beam, the expresssions of the eigenfunctions and 'Xi are
the same as those of the clamped-elamped beam, but here ki satisfies

tan k, = tanh k,.

For a free vibrating simply-supported-simply-supported beam, the eigenfunctions are

Xi(x) = )2 sin (inx/a); Yi(y) = J2 sin (iny/b), i = 1,2,3, ....

For a free vibrating simply-supported-free beam, the eigenfunctions are

X) (x) = )3(l-2x/a),

X i+ )(x) = cosh (kix/a) + cos (kix/a) - ai (sinh (kix/a) + sin (kix/a»,

Y, (y) = )3 (1- 2y/b) ,

Y,+,(y) = cosh (kiy/b)+cos (k,y/b)-ai(sinh (kiy/b)+sin(kiy/b)), i= 1,2,3, ....

For a free vibrating free-free beam, the eigenfunctions are

X) (x) = 1, X 2 (x) = J3(l-2x/a),

X i+ 2 (x) = cosh (kix/a) +cos (kix/a) - ai(sinh (kix/a) + sin (kix/a)) ,

Y, (y) = 1, Y 2(y) = )3 (1 - 2y/b),

Y,+ 2(Y) = cosh (k,y/b) +cos (kiy/b) - 'Xi (sinh (kiy/b) + sin (kiy/b)), i = 1,2,3, ....

For the last two cases, k i and 'Xi are the same as those of the clamped-elamped beam
eigenfunctions. The free vibrating beam eigenfunctions for other boundary conditions
including elastic supports on edges can be similarly obtained without any difficulty.

Which kind of beam eigenfunctions are used depends on the boundary conditions of
the plate. The unknown constants Cmk and D nk should be decided by having the admissible
functions ((Jm(x) and t/Jn(y) to satisfy the boundary conditions of the plate and the zero
deflection conditions at the line supports. Since it is quite difficult to construct co-ordinate
functions which satisfy the boundary conditions of plates with free edges, it is convenient
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to replace them approximately, by the corresponding boundary conditions of beams in
these cases. Considering the beam eigenfunctions have already satisfied the corresponding
boundary conditions, by substituting eqns (6a) and (6b) into the boundary conditions of
the plate one has

L.dXm(O) = 0, L t2 Xm(O) = 0, Lx3 Xm(a) = 0,

L'4Xm(a) = 0, m = 1,2,3, ... ,

L d Yn(O) = 0, Ll'2 Yn(O) = 0, Ll'3 Yn(b) = 0,

LI'4Yn(b) =0, n=I,2,3, ... ,

(7a)

(7b)

where Lxi and Ll'i (i = 1,2, 3,4) are differential operators which are decided by the boundary
conditions of the plate. For example, for the clamped--elamped edges there are

L yl = L y3 = 1,
d

Ly2 = Ll'4 = d-'. Y

For the clamped-free edges there are

d d 2 d 3

LXI = 1, L'2 = dx' L d = dx2' L X4 = dx 3;

d d 2 d 3

Lyl = 1, Ll'2 =d' L y3 = dy 2' Ll'4 =d3'. y . y

For the clamped-simply-supported edges there are

For the simply-supported-simply-supported edges there are

d
L y2 = dy'

For the simply-supported-free edges, there are

LXI = 1, L yl = 1,

For the free-free edges there are

Similarly, the differential operators can also be given for other boundary conditions includ­
ing elastic supports on edges.

From the zero lateral deflection conditions at intermediate line supports, one has

Xm(Xk) = - Xm+IAxk), k = 1,2,3, ,lx,

t(Yk) = - Yn+/I'(Yk), k = 1,2,3, , ly,

(8a)

(8b)

where Xk (k = 1,2,3, ... , Ix) and Yk (k = 1,2,3, ... , ly) are the co-ordinates of the inter-
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mediate line supports perpendicular to the x- and y-axes, respectively. From eqns (7) and
(8), the coefficients Cmk (k = 0, 1,2,3, ... , Ix+3) and Dnk (k = 0, 1,2,3, ... , Iy+3) can be
obtained. It may be seen that Xm(x) = 0 if there are only intermediate line supports parallel
to the x-axis and Yn(y) = 0 if there are only intermediate line supports parallel to the y­
axis.

There is orthogonality between the free vibrating beam eigenfunctions as follows:

f
o

U

Xm(x)Xi(x) dx = {oo (m = i),J (m -# i),

fOb Yn(y) Yj(y) dy = {ob (n = i),
Jc (n -# i),

(m = i),

(m -# i),

(n = i),

(n -# i).

The calculations in eqn (5) may be simplified by applying these integrations and can be
analytically or numerically performed easily.

3. NUMERICAL EXAMPLES

In order to illustrate the accuracy, convergency and utility of the approach described,
some numerical results are presented for two- and three-span rectangular plates with the
edges simply supported and/or clamped in one and two directions and comparisons are
made with previously published results where possible. The results are mainly for isotropic
plates but some are for orthotropic plates. In all cases, the integrations in eqn (5) are
analytically performed for the plates with opposite edges simply-supported and numerically
performed for the plates with other edges by Gaussian quadrature with 16 points.

The first example treated is the two-direction, two-span plate shown in Fig. 1, which
is simply supported on edges x = 0,° and y = 0, b and passed over intermediate line
supports at x = r:x.a and y = pb. Since there is only an intermediate line support in each
direction, Ix = Iy = 1. From eqn (6), letting ~ = x/a and,., = y/b one has

4

qJm(~) = J2 sin «m+ l)n~)+ L Cmk~k, m = 1,2,3, ... ,
k=O

4

t/!n("') = J2 sin «n+ l)n,.,) + L: Dnk,.,k, n = 1,2,3, ....
k= 0

Satisfaction of the zero deflection and zero second derivative at the simply-supported edges

y
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Fig. 1. Two-direction, two-span plate, simply supported all around.
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and zero deflections at the intermediate line supports yields

CmO = Cm2 = 0, Cm1 = Cm4 = -C~3 = -j2sin«m+l)ncc)/(cc4-2cc3+cc);

Dno = Dn2 = 0, Dn1 = Dn4 = -D;3 = -j2 sin «n+ l)nf3)/(f34 - 2f33 + (3).
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The eigenvalue equation (5) can be easily analytically given by the use of the next
integrations:

where (j(m - i) is the Dirac delta function. The integrations in the y-direction may be
identically obtained simply by replacing C with D, m with nand i with}.

Results for a rectangular plate of aspect ratio alb = 1.5 with cc = f3 = 1/3 and for a
square plate with various values of cc and f3 are given in Table 1. All results are in close
agreement with Takahasi and Chishaki (1979), Leissa (1973) and Kim and Dickinson (1987)
except for a square plate with cc = 1/4, f3 = 1/2 where Kim and Dickinson missed the
fundamental frequency of the plate, in the opinion of the author. The partial convergency

Table I. Frequency parameters (phw 2b4ID) 1/2 for the two-direction, two-span isotropic plate shown in Fig. I

Support
Side locations No. of terms Mode sequence number
ratio in series (4)
alb 0( fJ mxn 2 3 4 5 6

0.25 0.5 I x I 60.893
2x2 60.171 80.191 116.91 132.60
3x3 60.170 80.191 116.91 132.60 177.40 197.39
4x4 60.070 78.676 116.54 130.13 177.14 197.39
5x5 59.964 78.578 116.17 129.76 177.06 197.39

Kim,6x6 79.040 116.48 130.58 178.91 198.70
0.1 0.1 5x5 31.642 71.273 71.498 109.96 135.72 135.61
0.2 0.2 5x5 38.278 87.020 87.163 135.59 165.04 165.07
0.25 0.25 5x5 42.709 97.070 97.173 151.86 177.06 177.06

Kim,6x6 42.844 97.437 97.531 152.58 178.59 178.59
0.3 0.3 5x5 48.247 108.28 108.32 160.05 160.21 170.18
0.4 0.4 5x5 63.383 105.36 105.54 145.55 156.73 156.56
0.5 0.5 5x5 78.956 95.453 95.453 109.93 197.39 197.39

Kim,6x6 78.958 95.911 95.911 110.81 199.02 199.02
Leissa 78.957 94.485 94.485 108.22 197.39 197.39

1.5 1/fi 1/fi 5x5 49.122 63.239 84.309 91.927 97.059 124.61
Kim,6x6 49.293 63.925 85.322 94.445 98.712 128.15

Takahashi 49.305 62.907 83.892 91.301 96.295 123.41
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Fig. 2. One-direction, three-span plate, simply supported at two opposite edges.

study suggests that the rate of convergence is reasonably fast and the accuracy is generally
better than Kim and Dickinson's (1987) (in their paper, six terms in each of the series <Pm (x)
and t/Jn(y) were used) because the frequencies obtained are upper bounds by the use of the
Rayleigh-Ritz method.

The second example treated is the three-span, continuous plate in one direction shown
in Fig. 2. The plate is simply supported along y = 0, b, passes over intermediate line supports
at x = eta and {3a. In order to compare with the available results, the calculations are carried
out only for a plate of aspect ratio a/b = 3 with et = 1/3, {3 2/3 and for a plate of aspect
ratio a/b = 4 with et = 1/4, {3 = 3/4. Results for both edges (x = 0, a) simply-supported­
simply-supported (S-S), clamped-simply-supported (C-S) and clamped-damped (C-C)
are given in Table 2. The results are respectively compared with the exact solutions given
by Azimi et ai. (1984) and the Rayleigh-Ritz solutions given by Kim and Dickinson (1987).
The present results are in close agreement with those results but for the C-S edges (x = 0, a)
and aspect ratio a/b = 3 with a = 1/3, {3 = 2/3, where Azimi et ai. obviously missed the
second eigenfrequency of the plate by comparing with the results of the plate with the C­
C edges (x = 0, a) because the increase in restraint to the edges is bound to result in the
increase of the values of the eigenfrequencies of the plate according to the vibration theory
of structures.

As a third example, the two-direction, three-span orthotropic plate shown in Fig. 3 is
treated, which passes over line supports at x = a I a, {32a and y = a2b, {32b in the x- and y­
directions respectively. The first six eigenfrequency parameters for a square plate and for a
plate of aspect ratio a/b = 2 with various boundary conditions are presented. The results
in Tables 3-7 are, respectively, for the plate simply supported along edges x = O,a and

Table 2. Frequency parameters (phw 2b4ID) 112 for the one-direction, three-span isotropic plate shown in Fig. 2,
mxn 5x5

Support
Side locations Mode sequence number
ratio Type of
alb IX fJ edges 2 3 4 5 6

3 1/3 2/3 S-S 19.739 21.854 26.373 49.348 49.348 50.876
Azimit 19.74 21.60 26.00 49.35
C-S 20.269 23.843 28.523 49.712 50.848 52.029
Azimit 20.22 28.07 49.63 50.69
C-C 21.611 26.235 29.507 50.545 53.661 55.206
Azimit 21.60 26.00 28.95 50.45

4 1/4 3/4 S-S 12.968 19.739 21.794 24.303 36.099 42.341
Kimt 12.940 19.739 21.639 23.914 35.529 42.289
Azimit 12.92 19.74 21.53 23.65 35.21 42.24
C-S 12.989 20.130 23.025 27.103 36.716 42.341
Azimit 12.94 20.10 22.64 26.50 35.59 42.24
C--C 13.011 20.889 25.838 27.829 37.371 42.342
Kimt 12.982 20.834 25.746 27.328 36.440 42.296
Azimit 12.96 20.81 25.64 27.12 35.97 42.25

tmxn 6 x 6.
tExact solution.
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Fig. 3. Two-direction, three-span plate.
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y = 0, b (SSSS), clamped-simply-supported along x = 0, a and y = 0, b (CCSS), clamped­
clamped along x = 0, a and y = 0, b (CCCe), clamped-damped along x = 0, a and simply­
supported-simply-supported along y = 0, b (CSCS), clamped-damped along x = 0, a and
clamped-simply-supported along y = 0, b (CCCS). The convergency may be seen to be very
fast and the accuracy is better than Kim and Dickinson's (1987) for both isotropic and
orthotropic plates.

4. CONCLUDING REMARKS

It may be seen that the use of a combination of beam eigenfunctions and polynomials
in the Rayleigh-Ritz method is applicable to the study ofa variety ofone- and two-direction
continuous plate problems. The beam eigenfunctions which satisfy the boundary conditions
of the plate are selected as the main parts of the admissible functions and the polynomials

Table 3. Frequency parameters (phw 2b4ID) 1/2 for the two-direction, three-span isotropic plate shown in Fig. 3
(SSSS)

Side Support locations No. of terms Mode sequence number
ratio in series (4)
alb IX, P, 1X2 P2 mxn 2 3 4 5 6

0.3 0.65 0.45 0.85 I x I 140.54
2x2 139.65 171.65 185.35 214.35
3x3 139.53 170.79 176.61 204.57 219.25 248.95
4x4 139.12 170.28 176.03 203.84 214.10 243.57
5x5 139.09 169.04 175.60 202.06 210.78 239.84

0.1 0.85 0.2 0.7 I x I 87.570
2x2 84.917 145.51 160.75 222.28
3x3 82.846 144.17 155.72 217.64 226.58 238.79
4x4 82.694 142.01 155.40 214.93 222.75 236.74
5x5 82.501 141.23 155.31 214.18 221.42 235.59

1/3 3/4 1/2 2/3 I x I 126.19
2x2 125.66 173.88 195.06 240.68
3x3 121.94 164.40 183.58 222.66 243.48 250.660
4x4 121.46 164.18 182.89 222.41 238.67 249.75
5x5 120.85 162.78 180.74 219.23 237.81 245.82

1/10 1/3 3/20 2/3 I x I 93.790
2x2 81.237 138.19 150.95 209.09
3x3 80.500 136.56 147.17 203.77 217.24 254.12
4x4 80.358 136.50 146.93 203.63 216.89 252.29
5x5 80.290 135.92 146.74 202.70 214.59 252.04

2 1/4 3/4 1/4 3/4 5x5 71.509 94.974 102.19 1I1.16 169.36 197.39
1/3 2/3 1/3 2/3 5x5 111.03 114.47 120.97 134.66 137.69 143.35
1/3 2/3 1/4 3/4 5x5 83.286 90.543 140.79 151.72 180.12 183.20
1/4 2/3 1/3 3/4 5x5 92.556 101.25 119.71 137.33 142.95 145.12
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Table 4. Frequency parameters (phw'b 41H) ,,' for the two-direction, three-span orthotropic plate shown in Fig.
3 (CCSS)

Material Side Support locations No. of terms Mode sequence number
properties ratio in series (4)

D)H; D,IH alb (x, P, (X, p, mxn 2 3 4 5 6

I; 1 0.35 0.7 0.35 0.7 1x I 192.61
2x2 192.26 228.36 228.68 261.77
3x3 190.86 227.65 227.87 256.54 256.58261.31
4x4 190.72 226.66 226.94 256.43 256.44 259.45
5x5 189.95 226.25 226.53 251.86 251.98259.42

Kim,6x6 190.69 226.87 227.18 259.99265.88265.93
0.25 0.6 0.35 0.7 5x5 164.85 203.34 211.09 231.09 244.92268.81
0.4 0.75 0.3 0.65 5x5 173.61 207.45 207.76 237.98 279.98286.05

2 0.35 0.7 0.35 0.7 5x5 120.59 126.96 131.49 163.68 168.95172.96
0.25 0.6 0.35 0.7 5x5 114.94 123.68 156.13 158.80 163.49166.19
0.4 0.75 0.3 0.65 5x5 107.32 113.84 133.88 150.67 155.95163.01

1.543; 4.81Ot I 0.35 0.7 0.35 0.7 5x5 281.60 317.33 345.32 370.85 399.86422.55
2 0.35 0.7 0.35 0.7 5x5 229.23 233.59 236.64 277.70 297.20328.30

tThe values given for plywood by Hearmon (1959).

with undetermined coefficients are added as the modified parts of the admissible functions
in order to satisfy the zero deflection conditions at intermediate line supports. The
coefficients in the polynomials are decided by the boundary conditions and the intermediate
line supports of the plate. The starting order of beam eigenfunctions and the number of the
terms of polynomials in each direction are dependent on the number of intermediate line
supports in that direction in order to obtain the right results. The integrations of mul­
tiplication of beam eigenfunctions with polynomials may be numerically performed or be
analytically written in recurrent form without any approximate calculation, if one wants.
This presents a significant advantage over many other methods of analysis of plate systems
where the complexity and computation cost often increase substantially with increasing
number of spans. The proposed method is only valid for uniform thickness plates.

Table 5. Frequency parameters (phw'b 4IH) 1/' for the two-direction, three-span orthotropic plate shown in Fig.
3 (CCCC)

Material Side Support locations No. of terms Mode sequence number
properties ratio in series (4)

D,IH; D,IH alb (x, p, (X, p, mxn 2 3 4 5 6

1; 1 0.35 0.7 0.35 0.7 1 x 1 201.19
2x2 201.19 249.91 249.97 293.35
3x3 199.59 242.51 242.55 279.79 299.42299.42
4x4 198.76 242.08 242.13 279.76291.54291.58
5x5 198.04 240.01 240.03 276.61 291.09291.15

Kim,4x4 202.40 249.31 249.47 290.71 344.19344.38
Kim, 5 x 5 199.07 244.48 244.54 284.09 299.96299.96
Kim, 6x 6 198.55 243.27 243.32 282.31 297.20297.20

0.25 0.6 0.35 0.7 5x5 187.54 223.01 230.53 261.23 281.59309.34
0.4 0.75 0.3 0.65 5x5 187.32 222.38 231.43 261.65 282.23309.32

2 0.35 0.7 0.35 0.7 5x5 127.90 134.24 145.18 180.39 185.29193.20
0.25 0.6 0.35 0.7 5x5 125.07 131.06 161.14 178.05 181.24182.78
0.4 0.75 0.3 0.65 5x5 124.47 130.59 163.95 178.60 179.24184.02

1.543; 4.810 0.35 0.7 0.35 0.7 1 x 1 305.48
2x2 304.96 352.39 423.65 460.69
3x3 301.61 344.54 402.52 413.55 446.46494.08
4x4 301.05 344.24 394.66 413.33446.45487.71
5x5 300.30 342.08 394.16 409.21 441.42484.22

Kim, 6x 6 301.03 345.36 401.76 414.92 449.04 494.99
0.25 0.6 0.35 0.7 5x5 291.76 325.71 402.45 428.33 469.86516.73
0.4 0.75 0.3 0.65 5x5 290.73 324.10 405.13 430.37468.42522.24

2 0.35 0.7 0.35 0.7 5x5 247.56 251.97 259.25 295.08 317.35369.08
0.25 0.6 0.35 0.7 5x5 246.02 249.84 270.91 285.21 308.44 367.88
0.4 0.75 0.3 0.65 5x5 244.64 248.51 271.24 282.71 306.16370.73
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Table 6. Frequency parameters (phw'b
4IH) 1/2 for the two-direction, three-span orthotropic plate shown in Fig.

3 (CSCS)

Material Side Support locations No. of terms Mode sequence number
properties ratio in series (4)

D,IH; D,jH alb IX, PI 1X , P, mxn 2 3 4 5 6

I; I 0.35 0.7 0.35 0.7 I x I 186.72
2x2 185.83 215.13 236.94 263.11
3x3 184.86 213.29 231.09 254.79 257.92288.36
4x4 184.43 212.65 230.05 252.31 254.59280.87
5x5 184.05 210.74 228.25 248.46 251.37280.80

Kim,6x6 184.34 212.77 231.39 256.24 262.44 286.99
0.25 0.6 0.35 0.7 5x5 173.09 200.12 210.60 234.53238.43269.25
0.4 0.75 0.3 0.65 5x5 173.20 200.18 210.14 234.19 238.44 269.02

2 0.35 0.7 0.35 0.7 5x5 108.37 115.61 127.68 140.91 147.03 157.96
0.25 0.6 0.35 0.7 5x5 105.21 112.oI 138.01 143.92 145.04 166.17
0.4 0.75 0.3 0.65 5x5 105.18 112.08 137.97 144.00 148.30163.84

1.543; 4.810 I 0.35 0.7 0.35 0.7 5x5 261.10 307.93 326.45 364.34 365.85416.13
2 0.35 0.7 0.35 0.7 5x5 200.11 205.44 214.02 255.03 275.43279.59

Table 7. Frequency parameters (phw2b4IH) III for the two-direction, three-span orthotropic plate shown in Fig.
3 (CCCS), m x n = 5 x 5

Material Side Support locations Mode sequence number
properties ratio
DIH; DIH alb IXI P, 1X, P, 2 3 4 5 6

I; I 0.35 0.7 0.35 0.7 193.78 229.59 237.58 254.80 268.75 288.79
0.25 0.6 0.35 0.7 183.33 219.00 219.56 245.53 251.65 274.90
0.4 0.75 0.3 0.65 174.32 208.32 211.60 241.42 280.36 307.93

2 0.35 0.7 0.35 0.7 121.07 127.68 138.10 164.08 169.42 178.41
0.25 0.6 0.35 0.7 117.87 124.38 159.30 161.19 166.71 174.40
0.4 0.75 0.3 0.65 107.38 114.03 146.55 150.71 156.05 167.45

1.543 ; 4.810 I 0.35 0.7 0.35 0.7 285.68 330.65 373.92 384.82 410.15 444.25
2 0.35 0.7 0.35 0.7 229.57 234.35 241.69 281.46 305.05 328.55
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